Exercise 8

It is shown in Sec. 3 that if $z_1z_2 = 0$, then at least one of the numbers z_1 and z_2 must be zero. Give an alternative proof based on the corresponding result for real numbers and using identity (8), Sec. 6.

Solution

Suppose that $z_1z_2=0$. Then $|z_1z_2|=0$. Then $|z_1||z_2|=0$ by identity (8). $|z_1|$ and $|z_2|$ are real numbers, so $|z_1|=0$ or $|z_2|=0$ by the zero product property. The only number with a magnitude of zero is zero, which means $z_1=0$ or $z_2=0$. Therefore, if $z_1z_2=0$, then $z_1=0$ or $z_2=0$.